Microsoft Technologies Interview Questions
[ASP.NET Interview Questions]
What is ASP.Net ?
ASP stands for Active Server Pages. ASP is an open, compile-free application environment in which you can combine HTML, scripts, and reusable ActiveX server components to create dynamic and powerful Web-based business solutions. Active Server Pages enables server side scripting for IIS with native support for both VBScript and JScript.
ASPs are Web pages that contain server-side scripts in addition to the usual mixture of text and HTML tags. Server-side scripts are special commands you put in Web pages that are processed before the pages are sent from the server to the web-browser of someone who's visiting your website. All ASP pages are given a .aspx extension. The servers that support ASP are Internet Information Server (IIS) & Microsoft Personal Web Server. Unline normal HTML pages you can view ASP pages without running a web server.
When a ASP.net page is compiled it?s translated into MSIL.
What is Client side and Server side scripting ?
Client Side scripting: HTML is a language that provides formatting of static textual data. However it provides no true interactivity other than allowing the user to navigate from one page to another. Client side scripting enables embedding of limited programming instructions within a web page and this is performed at the client end. JavaScript and VBScript are two languages that allow you to embed client side scripting code into your static HTML files. The syntax of JavaScript is similar to Java as VBScript is similar to VB. The script is included in the tags.
Server Side scripting: When the browser makes a request for a file ending with the .ASP file extension, IIS knows to bring ASP.DLL into play to interpret the ASP code in the file. Once interpreted, the results of this code are placed into the document, which is a simple HTML document before it is sent to the user.
How does ASP.DLL know which code to interpret? The answer to this question is the key to executing code on the server. ASP.DLL interprets all code in a file (with the .ASP file extension) that?s delimited with
<?php
?
?> 

as being ASP code.
 

What is the global.asax file ?
Global.asax is a file used to declare application-level events and objects. Global.asax is the ASP.NET extension of the ASP Global.asa file. Code to handle application events (such as the start and end of an application) reside in Global.asax. Such event code cannot reside in the ASP.NET page or web service code itself, since during the start or end of the application, its code has not yet been loaded (or unloaded).
Global.asax is also used to declare data that is available across different application requests or across different browser sessions. This process is known as application and session state management. The Global.asax file must reside in the IIS virtual root.
Events and state specified in the global file are then applied to ASP.NET all resources housed within the web application. If, for example, Global.asax defines a state application variable, all .aspx files within the virtual root will be able to access the variable. Like an ASP.NET page, the Global.asax file is compiled upon the arrival of the first request for any resource in the application. The similarity continues when changes are made to the Global.asax file; ASP.NET automatically notices the changes, recompiles the file, and directs all new requests to the newest compilation. A Global.asax file is automatically created when you create a new web application project in the VS.NET IDE.
Global.asax files consist of the following elements:
1. Event Declarations: Define event delegates, such as OnStart (), that are global to an application.
2. Application Directives: Compiler-specific settings such as import statements.
3. Object Tag Declarations: Instances of objects that are globally accessible (state application variables).
Have you used the Visual Studio IDE? What are its features ?
Visual Studio .NET offers many advantages to the .NET developer, including: ?       A modern interface, using a tabbed document layout for code and layout screens, and dockable toolbars and information windows. 

?         Convenient access to multiple design and code windows. 
?         WYSIWYG (What You See Is What You Get) visual design of Windows and Web Forms. 
?         Code completion, which allows you to enter code with fewer errors and less typing. ?   Intellisense, which pops up help on every method and function call as you type, providing the types of all parameters and the return type. 

?         Dynamic, context-sensitive help, which allows you to view topics and samples relevant to the code you are writing at the moment. You can also search the complete SDK library from within the IDE. 

?         Immediate flagging of syntax errors, which allows you to fix problems as they are entered. 
?         A Start Page, which provides easy access to new and existing projects. 
?         The same code editor for all .NET languages, which shortens the learning curve. Each language can have specialized aspects, but all languages benefit from shared features, such as incremental search, code outlining, collapsing text, line numbering, color-coded keywords, etc. 
?         An HTML editor, which provides both Design and HTML views that update each other in real time. 
?         A Solution Explorer, which displays all the files comprising your solution (which is a collection of projects) in an outline. 
?         A Server Explorer, which allows you to log on to servers to which you have network access, access the data and services on those servers, and perform a variety of other chores. 

?         An integrated Debugger, which allows you to step through code, observes program runtime behavior, and set breakpoints, even across multiple languages and multiple processes. 

?         Customization capability, which allows you to set user preferences for IDE appearance and behavior. 
?         Integrated build and compile support. 
?         Integrated support for source control software. 
?         A built-in task list.
 

What are web services ? What is the significance of WSDL ?
Web services allow access to software through standard web protocols such as HTTP and SMTP. They enable software to interact with a wider range of clients. Web services can be consumed by any application that understands how to parse an XML. XML is the key technology used in web services.
Microsoft .net web services support three protocols HTTP GET, HTTP POST and SOAP (Simple Object Access Protocol).
For the clients to interact with the web services there must be a description of the method calls or interface that the web service supports. This web service description document is found in the XML schema called as WSDL (Web services description language). Any WSDL capable SOAP client can use the WSDL file to get a description of the web service and invoke methods on the service.
What are directives ? Which are the directives used in ASP ?
Directives are used to pass optional settings to the ASP.NET pages and compilers. They typically have the following syntax: <%@ directive attribute=value [attribute=value] %> Directives are typically located at the top of the appropriate file, although that is not a strict requirement. For example, Application directives are at the top of the global.asax file, and Page directives are at the top of the .aspx files. Application directive: The Application directive is used to define application-specific attributes. It is typically the first line in the global.asax file. Assembly directive: The Assembly directive links an assembly to the application or page at parse-time. The Assembly directive is contained in either the global.asax file, for application-wide linking, or in a page (.aspx) or user control (.ascx) file, for linking to a specific page or user control. There can be multiple Assembly directives in any file. Each Assembly directive can have multiple attribute/value pairs. Control directive: The Control directive is used only with user controls and is contained in user control files (.ascx). There can only be a single Control directive per .ascx file. Import directive: The Import directive imports a namespace into a page, user control, or application, making all the classes and namespaces of the imported namespace available. Page directive: The Page directive is used to define attributes for the page parser and compiler specific to the page (.aspx) file. There can be no more than one Page directive for each page file. Each Page directive can have multiple attributes.
What is ISAPI ?
Microsoft introduced an alternative to CGI, the Internet Server Application Programming Interface (or ISAPI). ISAPI addresses one of the most limiting features of CGI applications. Each time a client requests the execution of a CGI application, the web server executes a separate instance of the application, sends in the user?s requesting information, and serves the results of the CGI application?s processing to the client. The problem with this approach is that a separate CGI application is loaded for each request. This can be quite a drain on the server?s resources if there are many requests for the CGI application.
ISAPI alleviates this problem by relying on dynamic link libraries (DLLs). Each ISAPI application is in the form of a single DLL that is loaded into the same memory space as the web server upon the first request for the application. Once in memory, the DLL stays in memory, answering user requests until it is explicitly released from memory. This increased efficiency in memory usage comes at a cost. All ISAPI DLLs must be thread-safe so that multiple threads can be instantiated into the DLL without causing problems with the application?s function. ISAPI applications are normally faster than their equivalent CGI applications because the web server does not have to instantiate a new application every time a request is made. Once the ISAPI application DLL is loaded into memory, it stays in memory. The web server does not need to load it again
Explain the ?Application? object ?
The Application object can store information that persists for the entire lifetime of an application (a group of pages with a common root). Generally, this is the whole time that the IIS server is running. This makes it a great place to store information that has to exist for more than one user (such as a page counter). The downside of this is that since this object isn't created anew for each user, errors that may not show up when the code is called once may show up when it is called 10,000 times in a row. In addition, because the
Application object is shared by all the users, threading can be a nightmare to implement. You can use the Application object to share information among all users of a given application. An ASP-based application is defined as all the .asp files in a virtual directory and its subdirectories. Because the Application object can be shared by more than one user, there are Lock and Unlock methods to ensure that multiple users do not try to alter a property simultaneously.
What is the server object ?
The Server object provides several miscellaneous functions that you can use in your Active Server Page applications. Although most of its methods are seldom used, one method, the CreateObject method, and the Server object?s single property, ScriptTimeout, are invaluable. You will use these in many of your scripts.
The Server object, as its name implies, represents the web server itself, and much of the functionality it provides is simply functionality the web server itself uses in the normal processing of client requests and server responses.
ScriptTimeout
Server.ScriptTimeout [= lngNumSeconds]
Specifies the maximum amount of time the web server will continue processing your script. If you do not set a value for this property, the default value is 90 seconds.
CreateObject
Set objMyObject = Server.CreateObject(strProgId)
Instantiates an object on the server. Once instantiated, this object?s properties and methods can be used just as you can use the properties and methods of the objects that come with ASP. The DLLs from which these objects are instantiated must be installed and registered on the web server machine separately from your installation of IIS.
 

What is the use of the session object ?
You can use the Session object to store information needed for a particular user-session. Variables stored in the Session object are not discarded when the user moves between pages in the application; instead, these variables persist for the entire user-session. The Web server automatically creates a Session object when a Web page from the application is requested by a user who does not already have a session. The server destroys the Session object when the session expires or is abandoned. One common use for the Session object is to store user preferences. For example, if a user indicates that they prefer not to view graphics, you could store that information in the Session object. Note Session state is only maintained for browsers that support cookies.
What are HTML server controls and Web controls ?
HTML Server controls: HTML elements are completely client-based; the server has no knowledge of any of these controls. A browser knows what <input type="text"> is supposed to look like and renders it accordingly. HTML server controls are server-side elements. They're objects that are created on the server, with properties, methods, and events that you can handle. They generate HTML for the browser to display. HTML server controls are very easy to create?simply add the runat="server" attribute to any HTML element. Every HTML element has a corresponding HTML server control. 

<input type="text" id="MyTextBox" runat="server" /> Once you turn an HTML element into an HTML server control, every attribute of the element can be modified through code. Web controls: Web server controls are similar to HTML server controls. They're created on the server and allow you to build complex user interfaces easily. They require the runat="server" attributes to work correctly. They also provide rich programmatic capabilities. Unlike HTML server controls, however, Web controls don't necessarily map one-to-one to HTML elements and can represent more complex UI elements.

What are Web Forms ?
Web forms are very similar to traditional HTML forms. The difference is that Web forms are server-based, meaning you create the user elements on the server. The server has complete knowledge of what the interface looks like, what it can do what data it expects, and so on.
Web forms pages are divided into two parts: the visual elements and the accompanying UI logic. These two components are completely separate from each other conceptually, and they can be physically located anywhere you want. Typically, both parts are contained within one .aspx file.
The System.Web.UI namescape defines classes and interfaces used in constructing nd rendering elements on a Web form. The most important class in the System.Web.UI is the Control class which defines the properties, methods and events that are common in all server controls in the WebForm framework. Another important class in this namespace is Page which is a derivative of the Control Class. All ASP.NET web pages are instances of derivatives of the Page Class. To have an extensible framework, the System.Web.UI namespace also includes the UserControl class which is similar to Page class except that it is mainly used as the base class for user controls.
